Category Archives: Cars

All things automotive

A BMW Reflection

A post on Jalopnik today jogged my memory about an experience I had owning a BMW. Below, you’ll find an updated version of a tale I spun many moons ago over on 502streetscene.com. Enjoy.

Once upon a time, I bought a BMW. 1999 540i with the manual six speed transmission. I thought I’d made it. I had  a BMW. A desirable one. The Benchmark for a four door sports sedan. I thought I’d stolen it. Paid nine grand for it, and after replacing the clutch and the tires, I was cruising.

To this day, I still remember how well it drove. How you could drive it all day and not be tired because the seats were just that good. The stereo was shit until I replaced the speakers, but everything else about the car was amazing.

Then it all went downhill.

Rist off, it started idling like crap. The intake re-seal had to be done. It’s a typical item item, not a big deal. That was expected when I bought it. Knocked the job out in a weekend. No biggie, but the sheer number of fasteners and the low quality of the gaskets that crumbled to dust after just 100,000 miles was disappointing. Ford used much higher quality gaskets on my then-wife’s Sable. They were still nice and bendy at 110K when I replaced them.

Then I started getting Digital Throttle Control codes, and eventually it went to failsafe and wouldn’t move. Both TPS sensors in the throttlebody were fried. Root cause? The electrical connector on the computer-controlled thermostat leaked, and coolant wicked up the wires all the way back to the DME and shorted out a bunch of shit. Cost to repair that was a $300 throttle body, a $180 thermostat, a few connectors spliced into the wiring harness to stop water if it leaked again, and oh, I had to tear the top of the motor off and do the intake manifold re-seal all over again. Oh, and corrosion from the coolant shorted a pin that ran the secondary air injection pump to the #1 TPS… inside the DME. That meant unplugging the secondary air injection system, which is an emissions component, which means the car could no longer be registered anywhere that has emissions testing without a DME replacement.

Then the shitty plastic snap-on connectors they use on the radiator hoses failed catastrophically and without warning, dumping all my coolant out on the road in J-Town. Normally a cooling system failure is preceded by a leak. Not on a BMW. That shit just explodes.

THEN the real fun began. One day I start the car and it’s making this high pitch squeal. It’s coming from the driver side valve cover. Pull the valve cover, and there are chunks of what turned out to be timing chain guide all over the inside of the engine. BMW uses a very brittle and cheap plastic on the timing chain guides. If the tensioner isn’t replaced at the proper interval, the chain goes slack, beats the guides, and they crumble.

The kicker? There’s no replacement interval for the tensioner in ANY of the BMW service literature or the owner’s manual, which means most of these cars are running around with slack tensioners. From reading other peoples’ experiences on bimmerforums, the tensioner should be changed about every 50K miles or so.

But alas, it wasn’t on mine. Replacing the chain guides is a 23 hour job according to the book. It requires over a thousand dollars in special tools to block the cams and the crankshaft at TDC so nothing moves while you have the chain off, you have to tear the engine down to the bare longblock, and the car must be re-timed and the adaptations in the computer cleared or it’ll run like shit when you put it back together. The crank bolt must be torqued to 100ft-lb, then turned another 150 degrees in three more steps. I borrowed a torque wrench that did torque angle. It quit when I hit 500ft-lb on the bolt, and I was only halfway through the second tightening.

I did the guide replacement myself and then had it towed to Stein for them to re-time it. That lopped 15 hours off the bill, and it was still three grand.

Oh, and I spent an hour with a set of needle nose pliers pulling chunks of chain guide out of the oil pickup. Had that stray piece not gotten jammed in the right spot and made the noise and alerted me to the problem, I’d have never known, and the pickup would have eventually been completely blocked and the engine would have been oil starved and completely ruined.

Oh, and behind the chain guides is an oil separator. It’s made of brittle plastic and will break as soon as you touch it. Once it breaks, the car smokes like a freight train. Replacing it requires tearing the entire engine down again, because it’s behind the damn timing chain.

So, I got all that fixed. Car was running great… for a week. Then the steering interlock broke, immobilizing the car. Towed back to Stein, they had it two weeks waiting for the interlock, new keys, and a new ECS module. $600 more.

I put it up for sale right after that. In a single year, the car had cost me $7500 in parts and labor, $2000 in depreciation, used up all of my tows on my AAA membership, and was actually in-service for just 10 of the thirteen months I owned it.

I added it up after I sold it. I literally would have been cheaper for me to walk down to the BMW dealership and lease a BRAND NEW 550i than it was for me to own that E39 for a year. Literally. Lump together purchase price, parts, labor, and depreciation and divide by 12 and I could have driven a brand new car instead. Maddening.

As for doing the work yourself, a good friend once told me that a BMW owner needs but two tools: a cell phone and a checkbook. I used PTO to take many days off work to fix that damn car.

The only good thing, maintenance wise, about that car is changing the oil. With the canister filter and easy-to-reach drain, I didn’t even have to jack the thing up. Fifteen minute job… of course, by the time you buy the $30 filter kit and eight quarts of the $7.99 Mobil1 or Castrol Euro formula BMW LL certified oil, you have an $90 DIY oil change on your hands.

Like I said, I LOVED that car when it ran, I really did, but it made me pay for the pleasure.

The Road to (and from) the Optima Search for the Ultimate Street Car

Fair warning, this will be longer than a typical post.

Way back in February, I did something crazy. I entered the Optima Search for the Ultimate Street Car event schedule for the NCM Motorsports Park the weekend of June 10th. At the same time, I ordered my big Weld RT-S71B forged 18×9.5″ wheels. I was feeling giddy. A big name event, actual track time, big sponsors, lots of photo ops, and high-dollar competition that was surely going to crush me, but would be awesome to be able to compete against.

The best part? No work assignments! The second best part? I had five months to prepare! Easy?

Turns out, not so much.

My entire mission the past year or so has been to make changes to the car to reinforce it. After the engine rebuild, it’s been about longevity and reliability. I got new front suspension arms not because what I had didn’t work (it did), but because the new stuff was stronger and had 15 years’ more engineering know-how put into it. I built an engine that can make 500-600 horsepower on race gas and 30psi of boost, and have elected to (attempt) to run it at 17psi on pump gas, because I don’t want it to blow up. Instead of taking the leap to a Megasquirt, I jumped on an opportunity to simply add a blue-tooth enabled connection to my Powerlogger so I can monitor the engine without a lengthy development effort or cutting up the dash to fit more gauges.

So in the run up to the USCA event, it’s all been about evaluating the car and fixing stuff.

The first thing to fix was my new wheels. One of them ended up not being round.

Now, I have no idea how that happened, but Weld took the wheel back no questions asked and fixed it, so good on them. However, they couldn’t get it fixed and back to me in time for the USCA event, so I ran it on my old 245mm Dunlops. Omen #1.

Omen #2 was a trip down to Lexington for an autocross in May. It was hot. 90 degrees. On the way home, I had my handy new Bailey Engineering Scanmaster-G set on the coolant temp, and noticed that I was running 195 degrees on level ground. When cruising uphill at 70mph, the temperature climbed above 200. Not good, especially when I was anticipating having to run boost down a 1 mile long straight at NCM a month later.

So, after I got home and let the car cool down, I popped the radiator cap and looked inside.

the crusty insides of a 29 year old radiator
the crusty insides of a 29 year old radiator

Yup, thirty years had taken its toll. The tubes were crusty and full of deposits, the oil coolers were covered in slime. Once I had it out of the car, I found several pinhole leaks that had sealed themselves with corrosion. All in all, this radiator had lived its useful life. So I ordered a new one from GNS Performance. The radiator they sent me was a work of art. All aluminum, dual 1300+ CFM Spal fans. Lovely.

new radiator next to the old one, note how much thicker the core is
new radiator next to the old one, note how much thicker the core is

If this didn’t fix my cooling issues, nothing would. Thankfully, it fixed them. I did have a battle with the relays, though. The mounting brackets are crap. If you buy this radiator, zip-tie the relays to the brackets before you attempt to install it. Otherwise, they’ll come off the brackets and drag on the ground.

Omen 2 dispatched.

Omen 3, and the one I should have taken to heart and withdrawn from the competition and gotten my money back, was when I noticed my passenger side axle was leaking. Figuring the bearings where shot, I got new bearings and seals. When I popped the rear cover to get the C-clips out, I found this:

Missing ring gear tooth
Located missing ring gear tooth

Yes, there was a tooth missing from the ring gear. Conveniently, it had found its way to the magnet on the back cover and not done any further damage.

There’s a lesson here: DO NOT LEAVE OUT THE MAGNETS when you overhaul stuff. They were put there for a reason. There is no way to tell when that tooth broke. It had been at least three years since I popped that cover, maybe more. If that tooth hadn’t stuck to the magnet, instead finding its way back in-between the ring and pinion, the rear would have locked up, then shattered, and the car would have spun off and likely hit something unpleasant.

When my Dad and I pulled the wheel bearings, we found the passenger side bearing had, in fact, spun. Oops. It’s likely that whenever that bearing stuck, then spun, that’s when the tooth came off the ring gear. Or not. Hard to tell.

Anyway, we found this Tuesday night the week of the event. After a judicious application of the plastic wrench (thanks for the metaphor, Rich), I had a new ring and pinion on the way from Summit. It got here by 10am the next morning. Along with a new installation kit.

The next day, as we were installing the new ring and pinion, we discovered the installation kit had come with the wrong side bearings. GAH! Thankfully,  a local truck parts house had the proper bearings. My good friend, Tom Bell of Bell Motor Service helped me get stuff pressed off/on, and we got the diff back together Wednesday evening. Summit racing even took back the incorrect bearings and refunded me $58.

Then came the really hard part. Ring and pinion sets must be properly broken in, or they will fail. I needed to put 500 miles on the car by the time I got to Bowling Green – less than 36 hours from the time we buttoned the diff up.

So, Thursday was a driving day. My daughter packed up some books and videos and her MP3 player, and we climbed into the Buick early Thursday morning. We took the back roads to Newport and ate lunch at the Haufbrau Haus, then took I-71 back home. That got us 350 miles.

Friday morning, I packed up and headed for Bowling Green, again taking the back roads to extend the mileage and vary the speed. I arrived at the track just past noon, having put just over 500 miles on the ring and pinion. I paid $100 for a garage and parked the car so it could cool off. If you’re ever doing a track day event, pay for a garage. Being able to get out of the sun is worth every cent.

While it was cooling off, I took some time to walk around the event.

This twin turbo Camaro could have its power level dialed in anywhere from 500 to 1300 horsepower!

The equipment present was fantastic. It was also HOT. I don’t think it go below 90 degrees at night.

Anyway, I changed the differential fluid at the track, and thought all was well.

The next morning was the Speed Stop challenge. We started on a section of the road course, accelerated down a hill, up another hill, and had to stop the car in a box just over the crest. Much tougher than it sounds. I got one good run, then the car started stalling and sputtering. It wouldn’t rev past 3000 rpm, which, coincidentally is when the fuel injection system switches from sequential to batch fire. That’s important. Remember that.

After making a few more attempts at runs, I finally limped it back to the garage. I pulled the logs from the runs out of the Scanmaster and found that, curiously, when the engine burped, every single sensor spiked. This was good. It meant this was a problem internal to the computer, not a problem with the engine. So I pulled the computer out.

It was so hot to the touch, I nearly dropped it. After setting it on the concrete floor to sink some heat out of it, I opened it up. I wish I took a picture, but what I found was amazing. A ground had completely burned up inside the ECM. Now, since these ECMs sink a lot of current, they have a bunch of ground pins on their connectors, since one pin with a single 16ga wire isn’t enough to handle the multiple amps that ground through the computer. One of those pins had overloaded and melted, leaving the ECM with insufficient ground capacity. The epoxy that’s used to weatherproof the unit had melted in places. It had gotten hot, and likely had one or more internal short circuits.

This is where the 3000 rpm thing comes in. The car was stalling at 3000 rpm. When the fuel injection switched from sequential (1 injector grounded at a time) to batch (6 injectors grounded) the current overloaded the ECM and caused it to reset. At best, the car stumbled. At worst, it stalled completely.

Now this is where a small miracle occurred. Where do you get an ECM for a 1987 Buick Grand National on Saturday? In Bowling Green? Not at a store, that’s for sure. I called them all.

But wait, each year Bowling Green hosts the Buick GS Nationals! There had to be somebody nearby  that raced Buicks that had an ECM on the shelf. I called my friends at Boost Crew Motorsports, and within an hour, a kind soul brought me a loaner ECM.

So, while my Speed Stop runs were poop, I had a new ECM and an afternoon of autocrossing to get done. I also had the Design and Engineering portion, which I crushed. Top Ten finish in that section. Go me.

The autocross was HOT. The Dunlops didn’t like the heat and washed out halfway through my first run. I got two more runs done before the brand new cooling fans quit.

That’s right. 98 degrees and I had no cooling fans. It was at this point I threw in the towel. It was too hot and I was too tired. Racing further risked damaging the car worse or me losing my temper. I wasn’t having any fun. It was time to go home.

My good buddy Dave happened to be at the event working, and he’d brought his truck. A quick call to U-haul for a car trailer and we were loaded up and headed home.

Northbound and down…

Ironically, this would be the second time Uncle Dave had bailed me out of a racing-induced failure two hours from home. He was the one that got me home in 2014 after I blew my head gasket at IRP. I really need to get my own truck and trailer.

Once I got home and had time to properly troubleshoot, I found the root of the problem:

Melted!

Let me take a paragraph to explain what you’re looking at. It’s a ground, melted into a loom. The ground had gotten hot, probably from working loose and arcing after I installed the new fans (which grounded through this ring). As it melted the plastic, the plastic eventually encased the ring and separated it from the bolt head that was grounding it to intake manifold. This severed the ground and disabled the fans. I think it also re-directed a bunch of current through the ECM, which is what burned it up.

Needless to say, this particular ground has been fixed, and fixed right. A reman ECM was sourced and a spare I had in the garage has gone into the trunk “just in case.” The entire weekend, including the radiator, ring and pinion, entry fee, and hotel cost me over two grand.

That said, I didn’t do too badly. Thanks to my top ten Design and Engineering score along with Autocross and Speed Stop times that were above the bottom third, I managed to not be DFL despite scoring a big fat 0 on the road course portion. That’s a big deal.

I plan on trying again next year. I think with my big wheels on the car and all these other gremlins sorted, the Buick should turn some heads next year.

This thing actually works pretty good!

So, there have been more than a few posts on here regarding  my foolish endeavors prepping my Grand National for SCCA autocross competition. Some regard it as silliness, most others think it’s pretty badass. I’m having fun with it, though, and that’s all that really matters.

That, and results. Is what I’m doing working? How do you tell?

You tell with data. You collect data, and you analyze it, and the data will tell you if what you are doing is working or not. Without data, I’m just talking out of my ass.

So I got some data, then overlaid it on this video:

This is telemetry collected using superimposed on a video feed from my Go-Pro. If you watch the little g-meter in the bottom left, you’ll see the car hit 1.1g lateral acceleration, not in a crazy offset, but a sustained turn.

1.1g. Sideways. In a 1987 Buick Grand National.
Granted, this was at the Wilmington Air Park in Ohio, which is concrete. This car would not be able to do that on asphalt. Or would it?

That one was on asphalt, on a really cold day. It hit 1.0g. I’m happy with it.

What put the car over the top? What made this possible? Tires.

Big, beefy, sticky BFGoodrich Rival S tires. In 275/35R18. The biggest I could fit under the car without cutting it up.

Rear view of new tires
Rear view of new tires
Front tire at full left lock
Front tire at full left lock

What made getting this much rubber underneath a car that came with 215mm wide tires originally? Careful measurement and custom offset wheels. I aquired a set of Weld RT-S71B forged wheels for these meats. Getting them on the car and balanced required on-car balancing, since these rims are lug-centric. Weld can also only manufacture to a half-inch on the offsets. These wheels needed 1/4″ spacers on all four corners to truly get them to not hit stuff.

New Weld Wheels

The results are remarkable. I’m at the point now where I finally feel I’m in need of a bigger front swaybar. You see, the car is rolling a bit too much now and putting too much load on the outside front tire. It likely always has, but now I can prove it:

Trying to drive out of the tires
Trying to drive out of the tires

This photo was captured by the people at autoxpix.com, and shows quite clearly the wheel attempting to escape the bead of the tire during the 1.1g turn in the first video. I’ll attempt to compensate for this with more front tire pressure moving forward, but a better front anti-sway bar is going to be the real fix. Anti-sway bars don’t just make the car roll less in turns, the extra roll resistance actually transfers load from the outside wheel to the inside wheel, allowing the inside tire to handle more of work.

I don’t know when I’ll be able to get that done, I need to treat my property for termites soon, and that costs about the same as the swaybar I need. Oh, the woes of being a grownup.

Cadillac CTS-V and the steering thing

My Cadillac CTS-V sprang a really bad power steering leak the other day. Big leak. Giant puddle on the floor. Turns out it was the pinion seal on the rack and pinion assembly. Changing in the car would be a bit insane, so I had to pull the rack.

Now, there’s no procedure for removing the rack and pinion in the factory service manual, and I haven’t been able to find one on the internetz. So I’m writing one. Now. Step by step. No pictures, because you really don’t need them.

  1. Raise the front of the car as far as you can, set it down on jackstands positioned under the lift points on the subframe  (there are little arrows on the skirt showing you where).
  2. Remove the front wheels
  3. Remove the brake calipers and hang them off the upper control arms using wire or zip ties.
  4. Remove the brake rotors. Don’t beat them off with a hammer, they’re held on with a little torx head screw.
  5. Separate the tie rod ends from the spindle. I did it by running the nut almost all the way off, then whacking them with a ball peen hammer.
  6. Now is where it gets fun. Set a jack under the engine cradle, then remove the two driver side engine cradle bolts (21mm heads). Gently lower the driver side of the engine cradle onto a jack stand.
  7. Loosen the motor mounts from the engine cradle. The rear motor mount nuts are 21mm. The fronts are an 18mm nut welded to the frame and you’ll need to get a wrench on top of the bolt, that’s 13mm.  Loosen them as far as you can without taking the nuts off.
  8. Raise the engine with a jack, being careful not to crush anything up top.
  9. Remove the bolt holding the steering shaft to the pinion.
  10. Trace the wires coming out of the black cylinder that’s screwed into the rack gearbox portion to a connector right in the front of the car next to the ABS module. Disconnect and pull the wires out.
  11. Unscrew the black cylinder, being careful not to twist the wires. They’ll break if you twist them, and if they break, you’ll have to buy a whole new whatever that thing is.
  12. Disconnect the two power steering lines from the rack gearbox.
  13. Remove the anti sway bar.
  14. Unbolt the two bolts on either side that hold the rack down.
  15. Wiggle the rack out by moving it forward into the space vacated by the swaybar and pulling it out through the driver side wheelwell.

It’s not difficult, but it is time consuming. Take your time. Reinstall is reverse of removal.

Tensioner woes

The 1984-1987 (and 1989 Turbo Trans Am) engines had something that was relatively new to GM in the 1980s: A serpentine belt with a tensioner to drive the accessories. All the other G-Body powerplants (305 V8, 231 non-turbo V6, and the 4.3L V6) used multiple V-belts, with the tension set by feel.

The Grand National, with its fancy fuel injection and turbocharger, required something new. So, instead of a bunch of V-belts, it got an inch-wide serpentine with a tensioner to maintain tension on the belt instead of prying at accessories with a screwdriver.

This was all well and good, until my tensioner started making noise. Terrible noise. And it wasn’t the bearing in the tensioner pulley, no. the spring-loaded tension mechanism was popping and grinding and making a terrible racket. It needed to be replaced.

Problem: they don’t make it anymore. GM discontinued it. All the parts store no longer had them in stock. Turns out the tensioner assembly was unique to this engine, so it’s NLA. Thankfully, the good people at White Racing has created this new billet tensioner to replace the discontinued stock unit. It’s expensive considering the OE tensioner used to sell for $60, but this is an old, niche car. Gotta pay to play.

So I got one.

New tensioner on left, old and busted on the right

The first thing you notice is it’s shiny. The second is the massive amount of metal around the bolt holes compared to the stock unit. Where the stock unit has thin cast-in gussets, this new piece has been machined leaving as much material around the bolt holes as possible. This was done to alleviate a nasty habit the stock pieces used to have: they’d break. A popular thing to do with the Buick V6 was to put an eyebolt through the alternator, then hook that eyebolt to a ratchet strap that was attached to a hole in the frame. This kept the engine from rocking over to the passenger side and breaking the driver side motor mount. The problem came when people started making big power, all that force got transferred through the alternator case to the tensioner (which the alternator attaches to). The tensioner would then break. Not good. This tensioner is manufactured with a lot more metal hoping to avoid this situation.

Installation was pretty straightforward. Disconnect the battery, take the belt loose, get the intake tube that runs from the MAF to the turbocharger out of the way, unbolt the alternator and swing it out of the way, then remove the two remaining bolts to pull the old tensioner. Installation is reverse of assembly.

After installation, all of the undesirable noises and vibrations that had been coming from the front of my engine are gone. That includes not just the popping, but a persistent click that I had assumed to be a lifter. It was the tensioner all along.

Positive Ventilation

Turbocharged Buick V6 engines are famous for many things. One of them is puking oil out of every possible spot when the engine is under boost. They blow the dipstick tubes out. They force oil past the rear main seal. They spray oil out the valve cover breathers.  Mine even was forcing oil out of the PCV valve grommet under the intake plenum. They can be a huge mess. Even my newly rebuilt engine is doing this. It’s blowby. Gas getting past the rings when the engine is under boost. My first few autocross events, I was coming into the grid smoking after my third run from oil escaping the valve covers and pouring onto the exhaust. It was embarassing, it made a mess of the lots we race in (BAD), and made a mess of the engine compartment. I have been determined to fix it. After several attempts, I think I’ve nailed it. I’ve come up with a system using two catch cans and an industrial strength check valve. It goes a little something like this:

In this first picture, you see the passenger side of the intake manifold. Down underneath the plenum is an OEM PCV valve. The Goodyear hose runs to a catch can bolted to the side of the intercooler, then back up and through that brass check valve. The check valve is rated at 400psi, and is there to prevent manifold pressure from getting into the crankcase when under boost. Without that check valve, positive manifold pressure would easily overpower the OE PCV valve and pressurize the crankcase, which forces the oil out and makes a mess.

Now, the stock set up simply had a hose running from the PCV valve to the PCV inlet tube you saw the check valve attached to. The catch can keeps oil from making it to the check valve and gumming it up, as well as keeping the oil out of the intake tract.

But, there has to be another part. The stock PCV system had a vent in the passenger side valve cover that was connected to the turbocharger inlet. That set up mostly worked, but once you turn up the boost, that single vent simply isn’t enough. I’ve added a second vent.

Instead of one vent line, I ran two. Each valve cover has a Mr. Gasket breather cap on it and a 5/8″ line coming off of it. The lines go into a tee just behind the alternator, then run to another catch can.

From this catch can, we run out to a fitting that’s been screwed into the inlet pipe ahead of the turbo but behind the mass airflow sensor. This is important and I’ll explain.

PCV systems are basically a tuned leak. A port on the intake manifold provides a vacuum source, and a vent in the valve cover/intake tract provides a source of fresh air. Engine vacuum draws air into the vent, through the crankcase, and into the intake manifold where the crankcase vapors are burned in the cylinders.

In a computer controlled vehicle, this poses a problem. If you vent to atmosphere, say as if you’d used an open breather element on the valve covers instead of the closed ones I used, you would get extra oxygen in the cylinders that hadn’t been metered by the MAF. On a Buick using the stock computer, this extra oxygen is detected by the O2 sensor, and the computer adds fuel. In the Buick’s case, it adds WAY too much. So much that it washes out the rings, contaminates the oil, and eventually ruins the bearings. I didn’t want this to happen.

So, the vent is plumbed into the intake tract after the MAF. This ensures the air entering the crankcase through the vents has been metered, so when it shows up in the intake manifold via the PCV valve, the computer has already taken the air into account. It keeps the mixture correct, and doesn’t kill itself.

Under boost, the check valve on the manifold side closes, and the turbocharger inlet should draw out the crankcase gases via the breathers. In all cases, pressure should not build up inside the crankcase. It shouldn’t leak, and any atomized oil will condense in the catch cans and not foul up the turbocharger. All the air in the system goes through the MAF, and all should be happy. So is it?

Yes. In the screen capture below, you’ll see a grid on the right side. That is the Block Learn Multiplier (BLM) table. It’s basically a fuel trim table. If everything is absolutely perfect (70 degrees F, no leaks, perfect engine), all the numbers would be 128.  They’ll vary with conditions (temperature, whether the gasoline is RFG or not, etc.). If you have a vacuum leak to atmosphere, like you would with a PCV system vented on the valve cover to the air, you’ll see BLM numbers above 150, and that’s bad. These are all in the low 130s, which is pretty good.

The PCV system isn’t leaking in air from the atmosphere. I’ve already found a very slight amount of water/oil mix in the smaller catch can after a 20 mile drive, and I’ve got no leaking oil running down the valve covers or collecting under the intake plenum. Preliminary indications are positive, and I’ll report further after my next autocross event to see if this system stands up to competition.

New Seats!

So let’s talk about seats for a bit. Seats are important. Seats keep you in front of the steering wheel while you’re driving. When you turn, seats, combined with the seat belts, keep you from shifting around inside the car. In a crash, seats and seat belts keep you from getting crushed, either by slamming into the rear seat (or the passengers that might be there) or eating the steering wheel. They’re very, very important.

That said, the seats that came in GM products of the ’80s were designed to meet safety standards of the time as well as the desire of the typical ’80s customer for a smooshy, compliant seat. While the Grand National got a decent set of buckets for the period, the foam is still smooshy and the bolsters are set up for a person much wider than me. In a recent autocross, I was using my grip on the steering wheel to keep in place, and the tilt mechanism gave out. The wheel dropped into my lap, and I nearly spun the car out. Not good.

Not too long after that, an acquaintance of mine was racing his Malibu in Lexington, and his entire column failed, and he actually did spin the car. No bueno.

So I bought some seats. What I chose were some black buckets from NRG. I got the pair at Amazon for $299. They’re a ripoff of the Recaro bucket seat you could find in the 2000 Honda Integra Type-R. I picked them because I remember my friend’s Type-R and how well I fit in those seats. Honda made them to fit smaller Japanese customers, not fat Americans, and I fit in them perfectly.

Step one was removing the stock seat, and vacuuming up all the dog hair that was under them.

After removing them, I bolted down the brackets I sourced from Wedge Brackets. These things saved me gobs of time. Fabricating brackets would have taken me hours, and Wedge makes brackets and sliders for OEMs, so I have a bit more confidence in the safety of these in a collision that something I would have made myself.

Next step is getting the sliders bolted onto the seats. The NRG seats came with their own double-locking sliders, so I used those.

The NRG seats showed their Chinese-ness here. The bolt holes for the sliders were covered by fabric, I had to locate them by feel, then use an awl to punch holes in the fabric for the bolts to run through. Annoying.

After that, it was a matter of bolting the seat/slider assembly to the car.

Thoughts on these seats? They’re cheap. The fabric isn’t top-notch. The foam is very firm. In fact, I’ve gotten a new appreciation for how stiff my suspension actually is. The old seats sucked up a lot of the smaller bumps. The lack of squish in the cushions also means I’m sitting slightly higher in the car than I was. I may need to swap out for thinner sliders. The bolsters are fantastic. My skinny posterior fits perfectly and they upper bolsters seem to contain my shoulder and midsection pretty well. I’m able to take corners at speed with just fingertips on the wheel, and that’s using just the three point seat belt. Final verdict on how well they hold is reserved for the next autocross. I’m hopeful I can get away without a harness, because I need my back seat to remain usable.

These are also light compared to the stockers. With sliders, they’re 25 pounds each. The brackets are about 2-3 pounds. The stock power driver seat was over 50, and the passenger seat was close to 40.

But the best benefit? My irreplaceable stock seats are now wrapped in plastic and in the basement, safe from sweat and spilled drinks for the foreseeable future.

Wrapped for storage!

 

CAM Challenge East

I had the honor of participating in the first Speedway Motors CAM Challenge East, hosted by the SCCA at Grissom Air Base in Peru, Indiana, this past weekend.

To say it was a blast is an understatement. The course was fast, the cars were incredible, and the people were fantastic. The contrast between this event and the National Tour event I ran way back in 2003 was astounding. These CAM folks are fun to be around. Everybody enjoyed themselves. The “ringer” cars that whiney people said would show up and clean everybody’s clock showed up, and some clocks were cleaned, and NOBODY GOT UPSET. Because this crew appears to show up to have fun, not win. That is a novel concept for a national-level SCCA event.
The G-Force! from left to right: Andrew Scott, Lance Hamilton, Dave Nutting, James Bishir
One of the highlights was meeting up with some fellow G-Body owners. We had four: Myself, Lance Hamilton, Dave Nutting, and James Bishir. James is especially notable because this was his first ever autocross event. He was the perfect n00b. He asked questions, he talked to people, he listened, and he improved every single run. His first run, he was ten seconds off pace. By Sunday morning, he had beaten me by seven hundredths of a second.

Another treat was getting to watch Robby Unser and two-time Indy 500 winner Al Unser Jr. up close. They were both running in beautifully engineered machines built by Speedway Motors, and they were both blisteringly fast. But much to what should be the consertnation of the CAM doom and gloom crowd, the Unsers didn’t prevail in CAM-T on Saturday. Nope. They showed up with pit crew in professionally built race cars, and themselves were professional race car drivers with multi-decade careers. On Saturday they got beat by a kid – Cody Mason. And nobody was mad.

Takeaways for me? I need more tire. A lot more tire. I was running on 245mm tires, and was probably on the narrowest tire of any car at the event. Dave Nutting was also on 245s. James Bishir was running 275 in the front, 295 rear. Lance Hamilton had 275 all around, and everybody that beat all of us was on 305-315mm tires. Steamrollers. Thanks to being able to eyeball Lance and James’ cars, I can start planning on what I need to do to run similar sized rubber next year.

Here’s a link to my Google photo album from the weekend:
PICTURES!