Author Archive


After reassembling the engine with the new front cover, I ran it in for 20 minutes, changed the oil, and started it back up.

This is with the water up 185. Oil probably a tad cooler since this was just running it in the garage, but 20psi warm idle? I’ll take it.

20 psi oil pressure! At idle! YAY!

After a 20 minute drive around town to get some heat in the oil, I’m still showing 15. So that problem is solved. Now to get the break-in miles done.




Tale of an Engine Build, Part 4

There wasn’t supposed to be a part four to this series.

But there is. Sadly.

After getting about fifty miles on the car and changing the oil three times, even stepping up to 15w40 truck oil, I still had an oil pan full of metal, a tick I didn’t like, and really low oil pressure at hot idle. Like 4-6psi low.

So I pulled the engine out and took it back apart. The source of the problem was located inside the oil pump.

Pump gears. Note the scoring on the right hand gear tooth that’s pointing straight up.

Evidence of contact between the pump cavity and pump gear

Pump filter adapter thrust surface

I’d fallen victim to complacency. I didn’t check the pump cover before installing it. The guys that built it for me had already packed the pump gears with Vasoline and I didn’t want to take it apart and repack it after checking it. That was a mistake.

Line indicates axis of cam sensor and pump drive

Line indicates axis of cam sensor and pump drive

The oil pump on a Buick V6 is driven off the camshaft by the cam sensor. In a carbed application, this same hole would house the distributor. Like many other engines, the cam sensor/dristributor has a tab in it that fits into a slot on the pump drive shaft. If this alignment is not spot-on, the cam sensor and camshaft side-load the pump shaft, which rocks the pump gears into the sides of the pump cavity and into the thrust surface. If the clearances are too tight on one side of the gears, that means they’re going to be too loose on the other side. Oil bypasses the gears through this extra clearance, and voila! Low oil pressure.

The pump gears also ground against themselves and the pump cavity, releasing metal into the engine.

Most of the bearing shells were scored, as were the cam bearings. The crankshaft was unharmed.

So, the entire thing went back to the machine shop to be cleaned and have new cam bearings installed.

I also went back to my friend’s shop and we pulled his entire stock of brand-new timing covers. We checked them all with a set of new pump gears and my cam sensor. All of them had bore alignment problems. Every. Single. One.

So, don’t trust the new pump covers. ATP, Pioneer, Silver Seal, TA? All of them use essentially the same casting from China. Some of them spot-check their incoming stock to see if they’re junk or not. Some don’t. And even the ones that do can miss a batch. If you buy one, put it together on the bench and make sure the assembly turns properly. My friend had a used original GM cover that checked out. I’ve already ported it. Once I get it tanked (it’s pretty grimy) and painted, I’ll be able to finish putting the engine back together.

I also resurfaced the filter adapter.

Resurfaced filter adapter. Mucho  better-o.

And the short block is back together already. Once the timing cover gets back from cleaning, I can re-set the cam endplay, assemble the oil pump and pack it with fresh Vasoline, and finish assembling the engine. Again.

Mostly assembled engine


The Tale of an Engine Build, Part 3

In the last installment, I brought everybody up until the engine was in the car.

Now for the home stretch.

New battery cables finally arrived and were quickly installed. I filled the crankcase with five quarts of Comp 5w30 engine break in oil and primed the engine with a drill.

Loading the crankcase

With the electrical system finally hooked up, it was time to turn the key and see if we had brain activity, which I did.

First light

After that, I pulled the spark plugs back out. Why? With no compression, the new high-torque mini starter was able to spin the engine at almost 600rpm, further ensuring the oiling system was primed.

Then I put five gallons of Kroger’s best pump 93 in the tank using my trusty Purolator pump and the old battery from my girlfriend’s Mercedes.

Fill ‘er up!

While the pump was doing it’s job (which was making me not have to hold a five gallon can and pour it), I put the spark plugs back in and ran the plug wires. And then I started it, right?

Nope. I first hit the terminal near the driver side valve cover that turns on the fuel pump. Lo and behold, a fuel leak quickly manifested. I had sealed the fittings for my fuel pressure sensor with teflon-based paste. The gasoline ate right through the stuff. I had to disassemble the section and put it back together using the teflon based tape. Fifteen minutes max.

Then? Well, watch for yourself:

No smoke (except the header wrap baking in), no issues. We put the hood back on it the next day.

In our next installment, fixing the brakes for what I hope is the last time:

Christmas in January!


The Tale of an Engine Build, Part 2

When we left off back in December, I was waiting on a small base-circle camshaft to clear my stroker rotating assembly. It came. It cleared. Hooray.

With that done, it was time to assemble in earnest. The first step was to bolt the heads on and measure for pushrod length. I won’t go into detail on that process, because there are a ton of tutorials already out there. Suffice to say, I ended up needing 8″ pushrods. I ordered a set from Smith Brothers, and promptly installed the valvetrain.

Valverain installed

Also installed was the front cover. This is a blueprinted cover from Boost Crew Motorsports. The oil pump has been ported and clearanced, and it was spot faced for my roller cam button.

The balancer went on next, followed by other items like the oil pickup, the new lightweight (10 pound savings!) start motor, and the oil pan.

Getting the balancer installed required making a plate to go between the bearing on the balancer installation tool and the balancer. The bearing was just a tad too small and wanted to ram itself inside the balancer. No bueno.

Balancer installation

The flexplate went on next, and then the engine went in the car.

Engine back in its proper place

One would think, “Hey! It’s in the car! Easy from here, right?”


First off, the fancy SFI approved super-duper flexplate didn’t line up properly with the torque converter. When I zipped the bolts in, they kicked sideways and cross-threaded the converter holes. Bad. So the engine had to come back out, I had to helicoil the converter, and enlarge the bolt holes on the flexplate. This wasn’t easy. Both the converter mounting flange and the flexplate are made of super high strength steel, so cutting into it was very difficult.

But I got it.

Then, I was staring at a pile of dirty accessory brackets and accessories. Not acceptable. So a can of Dupli-Color aluminum engine enamel and several coats of clear and a lot of patience netted me some pretty blingy parts. The accessory bracket cleaned up really well, and I even disassembled and painted the alternator.

Accessory bracket, painted

Painted alternator!

Completed accessory drive

With the accessories complete, it was time to bolt the intake manifold down.

And it didn’t fit. Since the block has been decked twice and heads milled twice, the bolt holes didn’t line up anymore. Back to the machine shop it went to have 0.010″ taken off each flange. While they had it, I had the manifold completely ported and the EGR tower cut down and epoxied shut.

While waiting on that, I undertook the extremely frustrating act of wrapping my headers. It was difficult. This stuff is so maddening to deal with. You get a wrap started, and just when you’re ready to tied it off, you slip and it loosens and you  have to start over again. Nevertheless, I persisted, and they didn’t come out half bad.

Wrapped header. The wrap ate up ALL available extra clearance. It was a really tight fit.

After that two week delay, the rest went together pretty quickly. I made a small bracket to mount my new boost control solenoid.

Boost solenoid and bracket

I dressed up the wiring and got almost everything buttoned up yesterday. I’m waiting on a few push lock fittings and new battery cables to show up in the mail, and we’ll be set for a first start in the next week or so. I also have a new coolant overflow bottle on the way to replace the one I melted last year.

Mostly complete engine






The tale of an engine rebuild

If you follow my blog, you’ll remember my posts back in August (here and here) detailing the failure of my engine at the Optima Search for the Ultimate Street Car event in New Jersey. I started my rebuild story in another post back in October. Many may be wondering what happened? It’s been over a month!

Well, as it turns out, parts for this car are getting hard to get. Added to the availability issues are the nature of the build. High strength, non-standard reciprocating assembly, and custom fitting billet steel main caps resulted in an extended stay at the machine shop.

But the time to move forward has finally arrived! The block and reciprocating assembly came home just after Thanksgiving.

I had intended to make this a single post for the whole build, but it turns out that’s probably not going to work. I’m breaking it up.

In case you were wondering what kind of machine shop work goes into a build like this, here you go:

  • Disassemble/vacuum test heads
  • Resurface heads .010
  • Size piston wrist pins
  • Clean connecting rods
  • Check/polish crankshaft
  • Balance assembly
  • install 2 pieces mallory metal
  • Degrease and inspect block
  • Hone block
  • replace freeze plugs
  • replace oil galley plugs
  • resurface block .005
  • Check block height
  • Clearance for stroker kit
  • File Fit rings
  • Main cap fitting
  • Block line bore
  • Cam bearing install

All of this work took eight weeks to complete at two different machine shops and cost almost two grand. For just labor. Let me say here that this will be my last Buick V6 engine build. If it pops again, I put an over the counter reman long block in it and sell the car.

And while we’re doing bullet point lists, here’s the parts list, at least the fun parts:

  • 4340 Forged Steel Crank, 3.625 stroke crank
  • Molnar 4340 Forged steel 6.350 H-beam connecting rods
  • Carrillo Forged pistons (custom wrist pin height, standard dish)
  • PAC valve springs
  • Erson roller lifters
  • Comp 264HR grind roller camshaft
  • Double roller timing chain
  • Cometic MLS head gaskets
  • All bearings Calico coated
Like the new bench top?

Like the new bench top?

With everything in house, I began putting stuff together. An hour with the valve spring compressor and the heads were assembled. Yes, an hour. I had to take them back apart once I realized I’d misinterpreted my machinist’s cylinder numbering and had put the valves in the wrong holes. Sue me.

Assembled heads

Next came attaching the pistons to the connecting rods,  which resulted in a pretty fantastic engine-porn shot.


The next part was assembling the short block. A 3.830 inch diameter ring compressor made this much easier than it was the last time I put this engine together. What had been a frustrating few hours with the ratchet type compressor ended up being about half an hour this time around.

I bolted the main caps on and checked the diameters. The clearances are all between .0015 and .0020 inches. Right at the tight end of the acceptable range, which is what I wanted. My intention is to run it tight and use really good oil instead of running it loose and filling it with 50w sludge.

These single-piece piston ring compressors are worth every penny.

Once the pistons were loaded, I spun the assembly around to make sure everything cleared, especially the #1 rod. It interferes with the main oil feed galley coming from the pickup to the front cover. My machinist clearanced the block and took a bit off the bolt head and it clears. Barely.

Notch showing clearancing required for the stroker kit

This the only clearancing the block needed. Other rods may require more. I picked the Molnars specifically because they clear really well.

I checked the endplay. .005″. Exactly where I wanted it. Tight.

Dial indicator and huge screwdriver is all you need!

What didn’t clear was the camshaft. There was interference between the rods and the cam lobes. I was able to get it to clear by advancing or retarding the cam six degrees, but I didn’t want to run the car with the cam that far out. So, the cam went back, and I ordered a custom small base circle version of the same profile.

And with that, here stops this installment. Stay tuned! Once the cam shows up, we’ll be installing it, then the lifters and heads, then measuring for custom pushrods!

I’m also hitting up PRI this week, so I’ll likely do an entry on that.



C-clip eliminators

Most that have dealt with C-clip rear ends from GM and Ford know all about the good things. C-clips are easy to work on. It only takes a few minutes to get an axle out of the car. The bearings on the axle ends can be serviced with a slide hammer and rubber mallet, no need for a press or a trip to the machine shop.

What they don’t do well is cooperate with disc brakes, and all of the lateral load imparted on the axles hits the carrier bearings in the differential center section.

The axles float a tad, which is fine, except when the wheel hub is attached to the axle. Lateral movement allowed by the slop inherent in C-clip retained axles will cause pad knockback, even with a floating caliper. I’ve had trouble with it since I put the disc brakes on the back end of the car.

And lastly, since the axle is retained by the clip inside the center section, if you happen to break an axle, there is nothing holding the outboard section (and your wheel) in the car anymore.

Enter the C-clip eliminator kit. NHRA requires them in many instances as a safety item. They consist of a bearing block and bearing set that are pressed onto the axle, and then the assembly is bolted to the axle flange. Voila. No more C-clip, and the axle is retained at the outboard end, so if it breaks inside the housing the wheel stays on the car.

It also has the potential to reduce brake pad knockback, since all that slop from the c-clip design is eliminated. That’s the part that was attractive to me.

I looked at several C-clip eliminator kits. I first checked Moser, and they had one. But the instructions for the kit specifically stated they were not for street use. The end bearings were of a needle type, and had no ability to manage lateral loads well. These were drag-race only.

Strange had the answer. They offered a kit with both roller bearings for drag racing, and a street/track kit that used a tapered bearing.

The kit includes all the required parts and a single page (back and front) instruction sheet.

I’m not going to go through the install step by step, since that’s what the instructions are for. But I will offer a few tidbits here that weren’t in online writeups and youtube videos.

First of all, you have to drill on the axle housing. I found that the easiest way to get the holes right is to enlarge the lower holes in the flange, then bolt the inner guide plate to the lower holes, which enables you to use the upper holes in the guide as a jig to locate your drill.

A Harbor Freight 12-ton shop press is plenty for pressing the bearing assemblies on. At $99 with a coupon, the press pays for itself in a single use.

Bearing assemblies pressed onto the axles

And finally, the “button” on the inner end of the axles, where the c-clip normally would slip on, must be removed. I was able to cut it off easily with the axle in a vise and a quality metal cutting blade in my reciprocating saw. The same saw also made quick work of the bearing housing on the end of the differential housing. That cut doesn’t need to be pretty.

If you’ve been careful with your drilling, it will bolt right on.

All bolted together!

Now, here’s where my experience may help you:

I have a disc brake conversion. These kits are for cars with drum brakes. The caliper mount plate is much thicker (0.250″) than the standard sheet metal drum backing plate.

No worries! It can work! Before you perform the final assembly, slather some grease on the splines of your axle, and mock the thing up with the caliper plate in the sandwich where the instructions tell you to put the drum backing plate.

Then pull the axle back out. The grease should have been pushed down the splines and tell you just how much engagement you have with the center section. If you have at least 1″ of engagement, you’re good.

If you don’t have 1″, then you’ll need to call up your favorite axle vendor and order longer axles, since by the time you get to this point in the install, you’ve already cut up your housing and there’s really no going back.

Mine worked out just fine.

Also, with the disc brake plate in place, you’ll want to make sure the bolts that bolt the bearing plates to the the housing end are long enough to properly engage.

I’ll report back in the spring with whether these actually work out as expected. If they don’t, I’ll probably have a very broken and/or wrecked car. The big unknown is the strength of the flange on the axle housing. The GM 10 bolt assemblies in the G-bodies have a very flimsy (as compared to a Ford 9″ or a Chevy 12 bolt) flange.

However, I have a 0.250″ disk caliper plate sandwiched in the assembly, which should give it some additional strength.

All buttoned up!



The Rebuild

So, this entry marks the beginning of my documentation of my engine rebuild. Any big project needs some goals. Without goals, you have no idea if you’ve been successful, or even if you’re complete.

With that in mind, let’s back up and talk about my goals for next year:

  • Multiple Optima USCA events, possibly as many as four
  • Multiple National-level SCCA events
  • MidWest Muscle Car Challenge
  • Enough local events to be competitive for a regional trophy

This is an ambitious list, but it tells me what I need to get out of this engine build:

  • Reliability – this new engine needs to be bulletproof.
  • More power – If I’m going to play in the Optima playground, I need more juice. The transmission can take it.
  • Less weight – The car is too heavy. Shaving a couple of hundred pounds will make everything better. Better handling, more tire life, less load on drivetrain and suspension parts, and on and on.
  • Better brakes – The brakes are inadequate. Even with ducting added, I cracked a brand new rotor at NJMP. One event per set of rotors simply isn’t sustainable

So those are the goals for the winter build. In this entry, I’m going to talk about the first two: reliability and power.

There’s an adage: fast, cheap, or reliable: pick two.

I have decided to pick fast and reliable. My last build was fast and cheap, and it is now going to cost me dearly. But if I do this right, I won’t have to touch this engine for three seasons, and at that point I should be just looking at a bearing and gasket refresh.

So what am I planning to address the reliability issues? Well, if you read my earlier posts diagnosing the failure, I need to address boost control, head sealing, crankshaft flex, and very likely heat.

The crankshaft flex leads to an obvious solution: a better crankshaft. This build is getting a 4340 forged steel crank.

Forged steel crankshaft

4340 forged steel has double the tensile strenght of cast iron, and 50% more than cast steel. This crankshaft won’t bend like my stock crankshaft did. This will leave me with even bearing wear, less vibration, and an ability to handle much more power without twisting.

Connecting the crank to the pistons are the connecting rods. Since I trashed one of my OE rods, I needed a new set anyway. I again spring for forges pieces. Molnar H-beam connecting rods.

Molnar forge H beam connecting rod

Being forged, these rods are at least twice as strong as the original cast rods. These rods feature ARP’s highest quality rod bolt set, and the small end is bushed in brass. Brass is an interesting alloy. It’s porous. It will actually absorb oil, then release it in situations where the oil supply is reduced, effectively lubricating itself. Plus the metal is soft, it will yield where other metals would scuff or even tear. This reduces friction at the small end of the rod. Less friction is less heat is less load on the oil and cooler piston which is less likely to detonate, and the wristpins are much less likely to break under extreme use.

Complementing the crankshaft and rods will be a JH SFI-approved neutral balance flexplate to replace my bent stocker, as well as a BJH SFI-approved neutral balance harmonic balancer. The SFI approval ensures the parts are a) actually balanced, and b) won’t explode at extreme RPM ranges. They’re tested to 12,000 RPM, double what this engine should actually see. That’s a large safety margin. On top of all of that, these new pieces are lighter than the OE parts by a couple of pounds. A pound off the crank is worth something like 3-4 horsepower to the ground.

Speaking of power, astute readers will have noticed the stroke marked on the crankshaft. 3.625. This is a increase in stroke of 0.224″ over the stock 3.4″ stroke. The rods are also longer to compensate for the stroke, and I’m currently waiting on a custom set of pistons to fit everything together.

This extra stroke is where I’m getting my extra power. It should be worth an easy 150-200 additional ft-lbs of torque and 50-70 horsepower. This additional torque and the airflow that comes with it will help the car’s ability to accelerate out of low speed turns on autocross courses, and the turbocharger will spool faster.

I will also be replacing several of the main caps in the block with billet steel units, to hold this new crankshaft firmly in place.

All together, these bottom end improvements will go a long way towards increasing the strength of the engine.

Stay tuned for future installments, where I’ll talk about the valvetrain, oiling, heads, how to keep it from detonating again, assembly, and tuning.


Anatomy of a failure

So, after my disappointing engine failure at the Optima NJMP event, I was left with the big question:

What happened?

Well, after pulling the engine and tearing it down and reviewing the data logs from the event, even having an oil sample analyzed, the answer is clear:

Several things.

Dealing with things like this requires patience. I want to understand what broke and why it broke. Without fully understanding those things, I’ll just break it again.

Pulling the engine

Step one is getting the engine out of the car. Not a big deal. This is my second time doing it. Had it out in just a few hours. Before I started pulling it, I drained the oil, taking a sample to have analyzed. No water came out, which was encouraging. But the oil did settle in the pan with a nice metallic sheen on the surface. That wasn’t encouraging.

After getting the engine on the stand, I got the intake manifold off and saw the first hard evidence of what I was dealing with. The passenger side head gasket had clearly failed at the top of number six.

Busted head gasket at number 6

It managed to push the gasket out far enough that it contacted the pushrod, likely contributing to the noise. Once I got the head off, the effects were more obvious.

Head off, steam cleaned piston!

You can see pretty clearly the damage to the gasket. On the bright side, the water that got into the cylinder steam cleaned the top of the piston for me. The gasket also mostly re-sealed, which is why I was able to drive the car off the track and onward to the paddock and eventually onto the trailer. Yay?

The driver side showed signs of damage, too. But not nearly fantastic enough for pictures.

At this point, I was feeling encouraged. Maybe I got away with just a head gasket? Time to flip it over and pull the oil pan!

Oh God.

This isn’t good

That, my friends, is bearing material. Lots of it.

The number one cam bearing was damaged, as well.

Number one cam bearing

I pulled the number three main, and it was trashed.


Number three main bearing shell. That groove at the top is supposed to go all the way around.

At this point, I just took it to the machine shop so they could clean it. They found the top shell of the number one rod bearing was missing. The rod journal had been ground down 0.018 inch from the original size, and the cap and journal were discolored from the heat. The crank was trash, and so was at least one rod. The wear on all of the bearings was offset, too.  The crank bent. I bent the crank. The crankshaft bent. Holy crap.

So, that’s the physical damage. But what caused it?

Well, figuring out why the head gaskets failed was easy once I saw this chart:


The green line is the knock count. As boost climbed past 20psi up to 24psi, it starting pinging. A lot. I couldn’t hear it when it was happening. When it hit 24psi, the heads lifted off the block and the rest is history.

But the bearings?

OIl analysis, check out the highlighted numbers

OIl analysis, check out the highlighted numbers

Yeah, bearing wear. And checking out the slightly elevated number on the 8/5/2016 sample, it appears they’ve been wearing since I put the engine together. I think I screwed up something in the front cover and oiling system when I built the engine last time. They wore, and then the detonation event just finished them all off.

So, the total damage? Trashed crank. Trashed rod. Block is fine but will need some finish machining. I’m going to need a rotating assembly, new cam, and a properly constructed front timing cover and oil pump.

So what’s next? A lot. As is usually the case, it costs almost the same to put upgraded stuff into the thing as it would cost to just rebuild it as it was. I’m forging it all. All the things. Forged. FORGED!!!!!

And a few other plans. Stay tuned.



The road to (and from) Optima NJMP 2017

I must be insane.

Three weeks before I was slated to leave for the Optima NJMP event, I was at the National Street Rod Association Nationals in my hometown. They had an autocross course set up, and I ran on it. A lot. In fact, I burned second gear in the transmission. Oops

Not to worry, the fellows at Boost Crew Motorsports had a Stage 3 (all billet internals) transmission ready. After a liberal application of money lubricant, I had a new transmission. One good for something stupid like 1200 horsepower.

New transmission!

But it’s never that easy. After installing the transmission, when we put it into gear, it stalled. Turns out the transmission had the torque converter lockup feature removed. My torque converter still had lockup, and the transmission was pressurizing the clutch all the time. it was undrivable.

So, back apart it came. We mailed the torque converter to Performance Torque Converters and they removed the TCC mechanism. I go the car back together the day before I needed to leave. Down to the wire. Again.

So, after getting the car back home, I packed it. Tight.


The trunk was crammed with a pop-up tent, a jack, spare parts and fluids, tools, and cleaning supplies. In the back seat went my racing wheels, luggage, and cooler full of food and drinks. On Thursday morning, I set off for New Jersey.

The ride up from Kentucky to Millville was actually uneventful. It was a 13 hours slog, but I made it to my hotel and settled in for the night.

Parked in Millville

The next morning, my plan was simple: Find a car wash, and then get to the track and get the car tech’d.

Finding a car wash was harder than it should have been. The wash closest to the hotel was automatic only. The second wash I found was huge. Two buildings of self-service bays, but only three bays were working, and none of the change machines worked.

The third wash I found was just right.

Once I got to the track, I nabbed a super swell paddock spot, right next to the Optima trailer.

Super parking!

I unpacked the car and set up my tent. Then I ate my lunch.


A paragraph about NJMP: New Jersey Motorsports Park is awesome. Two tracks. A go-kart track. Clubhouse. Concessions. INDOOR BATHROOMS. If you get an opportunity to run at this facility, do it.

I went to tech once it opened, and scored full points on the D&E equipment section! I’d been docked a point at NCM for non-functioning reverse lights, but those were fixed.

The rest of Friday was just hanging out and talking to people. Closer to six, I pitched in and helped the autocross team set up the autocross course, then we went to dinner and back to our hotels to pass out.


Saturday was pretty much the same as it was at NCM. Get checked in, then run the autocross and get D&E judging done. I had prepared a statement for the D&E part, and read through it for the most part, but I think I needed to memorize it so I could look at the judges more and the tablet less.

The line for D&E

The autocross was fun. The pad at NJMP is much smaller than at NCM, so the course was very different. But it was a hoot. The bigger hoot was the competition. By the end of the day, Larry Woo won GTV by a second, but places two through 11 were separated by just 0.5 second. After moving my way up to 7th, two guys threw haymakers on their last runs and bumped me to 9th. But I was only 0.4s out of third and 0.5s out of second. The car ran fantastic. The new transmission didn’t puke fluid out of the vent like the old one. The new alignment took out most of the push. For the first time, I really felt like I wasn’t fighting the car to get it to turn and could really concentrate on the course. The front tires wore evenly, and my pressures stabilized at 36psi. Prior to the alignment fixes, I was running 38-40psi.

After we finished up with the autocross, there was the road rally. Unlike NCM, which was just a 30 mile jaunt down I-65, this had us snake our way through southern New Jersey to Ocean City and back. I had to stop for fuel on the route and learned abruptly that you’re not supposed to pump your own gas in New Jersey.

But I did anyway. Sorry!

In the evening, they catered a meal for us, and I ended up with a few friends at the bar until past ten.


Sunday was Speed Stop and track laps. I ran in the Novice group again. After our orientation laps and our first session, I got straight into line for the Speed Stop.  They ran it as a side-by-side autocross again with a drag tree start. I only made one pass, then headed back to the paddock to let the car cool off before my next track session.

Checking tire pressures, it stayed right at 36 like it had the previous day. Still no transmission fluid out of the vent. Everything was working great.

My second track session, I tried to drop the hammer a bit more.

Now, there had been an incident during our first session with contact between two cars, and they’d asked us to leave more space. I won’t give too many details about the crash, other than to say it completely reinforced why if you go four wheels off, stay off until a corner worker guides you back onto the surface. So I had to hang back a bit to keep out of the black Camaro’s trunk. How much he slowed me down is evidenced by the seven mile per hour difference at the end of the straight from the beginning of the video to the end. I had hoped to pass it on the next lap, but alas, it was not to be. The car blew both head gaskets not long after the video above concluded.

Thanks to a quirk of Cometic MLS gaskets, though, the car made it back to the paddock. When MLS gaskets fail, they usually just leak, not blow out completely. So the car still ran. It made a hell of a racket, but it ran. But it wasn’t going to get home.

Thankfully, people seem to like me, and a friend had space in his trailer. I stayed around to help tear down the Speed Stop course, then we headed home. We stopped in Hagerstown for the night, then got to Louisville about three in the afternoon.


Now the good part: results. Despite the failure, I did better than at NCM. Scoring 53 additional points. I completed all elements of the competition. I improved my D&E score. I improved my track lap time, and while my autocross placement was only slightly higher than NCM at 9th in my class, I was WAY closer to the front runners, even after adjusting for the shorter course.

My Speed Stop score was the big disappointment, since I only got one pass. I know I could have shaved a lot more time off Speed Stop with a few more runs at it.

Overall, I ended up 16th out of 23 in my class.  The competition was so close, though, that I think if I can get the car to survive the event I can crack top ten easily. Speed Stop and Hot Laps really killed me. I was 19th in class in both with limited runs. Just a second off my Speed Stop time would have bumped me up into the top ten for the class, and a second was easily obtainable. I think with another session of practice and some clean air, I could have taken at least ten seconds off my road course time, too. Not sure I was going to go 1:13s, but 1:17 was definitely feasible.

But coulda woulda isn’t did. What I did was not what I’d hoped, but still an improvement over last time. And now I have a grudge against NJMP. So I’ll be back next year. I’m starting the teardown on the engine this weekend. All indications is the damage is limited to the head gaskets. Fingers crossed that holds true as I dig further in. If it is, I’ll pull a few PSI of boost out of the engine for the track day to safeguard the head gaskets. If there’s damage further in, I’ll have to evaluate my options.

Huge thanks to Brad Lay and Boost Crew Motorsports for a herculean effort getting me a working transmission; Brian Mason for getting me home; Dave Melton for keeping me in my place; Brian Preston for keeping me entertained; my GTV competitors for a great run on Saturday; and all the Optima and FM3 staff that makes these events possible.

I’ll be back.



Optima Search For the Ultimate Street Car, NCM Edition

You may remember my post last year about attending the Optima Search For the Ultimate Street Car event at the National Corvette Museum Motorsports Park. You may remember that weekend ended with the car on a trailer being towed home after some serious electrical issues disabled the ECM and later, the cooling fans.

That is not what happened this time.

I did it! Not only did car and I complete the entire event, I placed ninth! Out of thirty one in the GTV class!

Arrival Friday was uneventful, in stark contrast to last year, when I had to immediately change the diff fluid. Nope. This year I parked the car under the Discount Tire Dangerous Curves Motorsports pop-up tent and changed my tires in the shade.



After that, it was a trip to the tech shed. Tech inspection was slightly different this year. In addition to the normal safety stuff, they went ahead and went through the standard part of the D&E judging, verifying lights and horn and A/C and stereo worked. I got docked a point for non-functioning reverse lamps. As it turns out, the parking lot fix I had to perform to get the shifter working at Putnam Park a few weeks ago disabled the reverse lights. I’ll need to get that taken car of soon.

Another change this year is the fire drill. I had to get into my full road course get-up, with my driver suit, shoes, helmet, neck restraint, and gloves, strap myself completely into the car, and then escape it within 12 seconds. I think I got out in less than two.

After that, I hung out with the Dangerous Curves Motorsports team, walked the autocross course, and had a couple of beers before retiring to the hotel for the night. Which was a nice place. Brand new, I think I must have been the first person to use the room I was in. Way less stressful than last year.

Saturday morning started bright and early. The format was slightly changed from last year. The Autocross and Design and Engineering judging were the only things happening. The Speed Stop had been moved to Sunday. I got in line to get the D&E out of the way early. I wasn’t really prepared for it this year, and I forgot to point out a lot of the stuff I’d done to the car, so my D&E score was really lackluster compared to last year’s top ten finish. Oops.

Then on to the autocross. It was a fairly simple course, about thirty seconds long. I started out in the mid-32 second range, but tips from my new best friend Paul got me down to a 30.56, which was good for 11th in the GTV class. The first place car had a 29.022, just 1.4 seconds faster than me. Which is a lot in an autocross, but I’ve significantly closed the gap. A year ago, these guys were beating me by nearly six seconds.

Autocross results

The car performed flawlessly. In fact, the new front swaybar made a huge difference. The car was even packing the front wheel digging out of turns, so I may need to stiffen the back up somehow.

Also, it was hot. But not as hot as last year. My best run follows:

Another cool item is my second best run. I captured data from the ECM using my Powerlogger and an old phone, and managed to merge that data with my Harry’s Laptimer Data, and overlaid it with Dashware:

You can see in the second video I have working throttle indicator, manifold pressure, and tachometer. I also meant to throw in oil pressure, but I forgot. The six year old Samsung Reverb smart phone I was using ended up not being able to run reliably for the entire day, but at least I proved out the concept. I’ll need to get a better Android device for the next event.

After the autocross, we did the “Road Rally,” which was less a road rally, and more of a 40 minute jaunt south to Franklin on I-65 and back again. Dinner was a decent BBQ spread, which I ate. But then I went back to the Dangerous Curves Motorsports pit box and ate Troy’s food. The event catered BBQ was really good. But Troy’s was fantastic. So I ate both. *burp*. We hung out until dark chatting with some local friends from Bowling Green that had come out to hang.

The next morning, this had happened in the parking lot of the hotel:

Four decades of GM power!

Yup, a split-window Stingray, a Chevy SS, my car, and a C5. The pinnacles of GM performance for the 1960s, the 1980s, the 00s, and the current. Pretty cool. Especially the SS. You don’t see many of those. The blue Corvette also had a great weekend, placing very high, I think possibly winning a class, but broke on Sunday. I heard it making sad knocking noises and eventually being pushed into its trailer.

Sunday was the Hot Lap challenge and the Speed Stop. Where last year the speed stop had been a single-car at a time blast through the sinkhole on the east course of the race track, this year they set up a small side-by-side autocross with a drag tree start. Reaction time and 60′ weren’t measured, but it made for good TV.

It also rained. A lot. There was a dry period after an initial downpour, but I wasn’t able to get dry speed stop runs. Amazingly enough, my wet ones were still good for ninth in the class, and many of the cars I beat had dry runs!

Then the Hot Lap challenge. Woah nelly. Butterflies. I’d heard about how technical the NCM course was. Blind corners and elevation changes that easily catch unsuspecting drivers out and send them careening into gravel pits and ARMCO barriers. My new best friend Paul to the rescue again. He gave Peggy and I a good brief on the course and pointed out the tricky spots. It helped. A lot.

In fact, some of my other novice friends didn’t have a Paul. One of them nearly wiped out right in front of me in a blind turn during the orientation lap. So thank you again, Paul!

Once we got going, the course was a blast. It was technical. There are several turns that don’t behave the way they look, which made it a challenge getting them right. But I improved steadily through the first three sessions, with the second and third sessions actually being on a dry track. My best lap time of 1:47.2 was good for 11th.

That’s the Dangerous Curves Motorsports Mustang in front of me. Super nice car. I wish my chassis setup was as good as theirs. Their tires must last twice as long as mine. Easily.

Compared to Putnam Park, NCM was much harder on the brakes. However, unlike at Putnam Park, my brakes worked really well. The new compound pads were a really big improvement, and I had no fear of the car not stopping by the end of the first session.

The car handled fantastically. The back straight ended up being longer and faster than expected, and I know I could pick up nearly a second there by not chickening out and lifting so soon. I also left a lot of time in turn one. No more heat issues in the engine bay, thanks to some heat wrap and reflective tape. The front brakes, however, got cooked. The rotors were grooved and annealed, and the anodizing on the calipers became discolored.

Hot rotors turn blue, and black calipers turn purple

I’m currently installing new front air dams on the car with brake ducts to hopefully ameliorate  this issue. If the ducts don’t work, I’ll be investing in some big brakes.

After my third lap session, the skies opened up. Then lightening halted the event. The race track shut down. The Speed Stop was re-opened for a while, but it never dried out.

Rain, rain.

The awards were moved up to 4:20 pm, and everybody got out of town. It was a long, wet drive home, but the weekend was well worth it. I’m seriously considering the event in New Jersey in August, and Road America in October. I think with a few more tweaks to the car and a lot more driver tweaks, I can go faster. With an improved D&E performance and dry Speed Stop runs, I easily could have moved up several spots.

I’m finally trusting the car, and when you trust the car, you can drive it harder. It’s been a long road getting it to this point, but I’m happy with the results so far.